
Week 5 - Friday



 What did we talk about last time?
 Recursion











 The sequence: 1 1 2 3 5 8 13 21 34 55…
 Studied by Leonardo of Pisa to model the growth of rabbit populations



 Find the nth term of the Fibonacci sequence
 Simple approach of summing two previous terms together
 Example: n = 7
 1 1 2 3 5 8 13
1 2 3 4 5 6 7



 Base cases (n = 1 and n = 2):
 Result = 1

 Recursive case (n > 2):
 Result = fibonacci(n – 1) + fibonacci(n – 2)



public static int fib( int n ) {

if (n <= 2) {
return 1;

} else {
return fib(n – 1) + fib(n – 2);

}

}

Base Case

Recursive
Case



 Example: fib(6) fib(6)

fib(4)fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1)

fib(3) fib(2)

fib(2) fib(1)

Uh oh.



 For most cases, calling fib() makes calls two more calls to 
fib(), which each make two more calls to fib(), and so 
on…

 Many values are redundantly computed
 The final running time is O(2n/2)



 The recursion is fine from a mathematical perspective
 We just need to avoid recomputing lower terms in the 

sequence
 We can use the idea of carrying along both the (n – 1) term 

and the (n – 2) term in each recursive step



public static int fib2( int a, int b, int n ) {

if (n <= 2) {
return b;

} else {
return fib2(b, a + b, n - 1);

}
}

// proxy method
int fib( int n ) {
return fib2(1, 1, n);

}

Base Case

Recursive
Case



 We want to raise a number x to a power n, like so: xn

 We allow x to be real, but n must be an integer greater than or 
equal to 0

 Example: (4.5)13 = 310286355.9971923828125



 Base case (n = 0):
 Result = 1

 Recursive case (n > 0):
 Result = x ∙ x(n – 1)



public static double power(double x, int n) {

if (n == 0) {
return 1;

} else {
return x * power(x, n – 1);

}

}

Base Case

Recursive
Case



 Each call reduces n by 1
 n + 1 total calls
 What's the running time?
 Θ(n)





 Programming model
 Java
 OOP
 Polymorphism
 Interfaces
 Exceptions
 Generics

 Java Collections Framework



 Big Oh Notation
 Formal definition:  f(n) is O(g(n)) if and only if
▪ f(n) ≤ c∙g(n) for all n > N
▪ for some positive real numbers c and N

 Worst-case, asymptotic, upper bound of running time
 Ignore lower-order terms and constants

 Big Omega and Big Theta
 Abstract Data Types
 Array-backed list



 Stacks
 FILO data structure
 Operations: push, pop, top, empty
 Dynamic array implementation

 Queues
 FIFO data structure
 Operations: enqueue, dequeue, front, empty
 Circular (dynamic) array implementation

 JCF implementations: Deque<T> interface
 ArrayDeque<T>
 LinkedList<T>



 Linked lists
 Performance issues
 Single vs. double
 Insert, delete, find times

 Linked list implementation of stacks
 Linked list implementation of queues





 Let M and N be two integers, where M is no larger than N
 Use Big Θ notation to give a tight upper bound, in terms of N, 

on the time that it will take to
 Add M and N (by hand, using the normal algorithm)
 Multiply M and N (by hand, using the normal algorithm)

 Use Big Θ notation to give the same bounds but this time in 
terms of n, where n is the number of digits in N



int end = n;
int count = 0;
for (int i = 1; i <= n; ++i) {
end /= 2;
for (int j = 1; j <= end; ++j) {
count++;

}
}



int end = n;
int count = 0;
for (int i = 1; i <= n*n; i += 2) {

count++;
}



int count = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n/j; ++j) {
count++;

}
}



 If we increase the R, G, and B values of every pixel by 25%, the image will 
get lighter

 Let Color be the following:
public class Color {

public int red;
public int green;
public int blue;

}
 Let pixels be a Color[][] array with height rows and width

columns
 Write the code to lighten the image by 25% (by multiplying by 1.25)
 Don't forget to round the results before storing them back into each color 

component



Assume the following:

public class List {
private static class Node {
public int data;
public Node next;

}

private Node head = null;
…

}

Write a method in List that reverses the linked list.



public void reverse() {
if (head != null) {

Node reversed = head;
Node temp = head;
Node rest = head.next;
temp.next = null;
while(rest != null) {

temp = rest;
rest = rest.next;
temp.next = reversed;
reversed = temp;

}
head = reversed;

}
}



 Write a method that takes a CharBuffer object
 The CharBuffer object has two methods:
 nextChar() which extracts a char from the input stream
 hasNextChar() which returns true as long as there is another char to 

extract
 The method should return true if the input stream is a 

palindrome (the same backwards as forwards) and false
otherwise

 Use no String objects or arrays (other than the ones embedded 
in the stack)

 Hint: Use at least 3 JCF Deque (stack) objects







 Exam 1 on Monday!



 Office hours from 1:45-4 p.m. canceled today
 Review for Exam 1
 Keep working on Project 2
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