
Week 5 - Friday

 What did we talk about last time?
 Recursion

 The sequence: 1 1 2 3 5 8 13 21 34 55…
 Studied by Leonardo of Pisa to model the growth of rabbit populations

 Find the nth term of the Fibonacci sequence
 Simple approach of summing two previous terms together
 Example: n = 7
 1 1 2 3 5 8 13
1 2 3 4 5 6 7

 Base cases (n = 1 and n = 2):
 Result = 1

 Recursive case (n > 2):
 Result = fibonacci(n – 1) + fibonacci(n – 2)

public static int fib(int n) {

if (n <= 2) {
return 1;

} else {
return fib(n – 1) + fib(n – 2);

}

}

Base Case

Recursive
Case

 Example: fib(6) fib(6)

fib(4)fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1)

fib(3) fib(2)

fib(2) fib(1)

Uh oh.

 For most cases, calling fib() makes calls two more calls to
fib(), which each make two more calls to fib(), and so
on…

 Many values are redundantly computed
 The final running time is O(2n/2)

 The recursion is fine from a mathematical perspective
 We just need to avoid recomputing lower terms in the

sequence
 We can use the idea of carrying along both the (n – 1) term

and the (n – 2) term in each recursive step

public static int fib2(int a, int b, int n) {

if (n <= 2) {
return b;

} else {
return fib2(b, a + b, n - 1);

}
}

// proxy method
int fib(int n) {
return fib2(1, 1, n);

}

Base Case

Recursive
Case

 We want to raise a number x to a power n, like so: xn

 We allow x to be real, but n must be an integer greater than or
equal to 0

 Example: (4.5)13 = 310286355.9971923828125

 Base case (n = 0):
 Result = 1

 Recursive case (n > 0):
 Result = x ∙ x(n – 1)

public static double power(double x, int n) {

if (n == 0) {
return 1;

} else {
return x * power(x, n – 1);

}

}

Base Case

Recursive
Case

 Each call reduces n by 1
 n + 1 total calls
 What's the running time?
 Θ(n)

 Programming model
 Java
 OOP
 Polymorphism
 Interfaces
 Exceptions
 Generics

 Java Collections Framework

 Big Oh Notation
 Formal definition: f(n) is O(g(n)) if and only if
▪ f(n) ≤ c∙g(n) for all n > N
▪ for some positive real numbers c and N

 Worst-case, asymptotic, upper bound of running time
 Ignore lower-order terms and constants

 Big Omega and Big Theta
 Abstract Data Types
 Array-backed list

 Stacks
 FILO data structure
 Operations: push, pop, top, empty
 Dynamic array implementation

 Queues
 FIFO data structure
 Operations: enqueue, dequeue, front, empty
 Circular (dynamic) array implementation

 JCF implementations: Deque<T> interface
 ArrayDeque<T>
 LinkedList<T>

 Linked lists
 Performance issues
 Single vs. double
 Insert, delete, find times

 Linked list implementation of stacks
 Linked list implementation of queues

 Let M and N be two integers, where M is no larger than N
 Use Big Θ notation to give a tight upper bound, in terms of N,

on the time that it will take to
 Add M and N (by hand, using the normal algorithm)
 Multiply M and N (by hand, using the normal algorithm)

 Use Big Θ notation to give the same bounds but this time in
terms of n, where n is the number of digits in N

int end = n;
int count = 0;
for (int i = 1; i <= n; ++i) {
end /= 2;
for (int j = 1; j <= end; ++j) {
count++;

}
}

int end = n;
int count = 0;
for (int i = 1; i <= n*n; i += 2) {

count++;
}

int count = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n/j; ++j) {
count++;

}
}

 If we increase the R, G, and B values of every pixel by 25%, the image will
get lighter

 Let Color be the following:
public class Color {

public int red;
public int green;
public int blue;

}
 Let pixels be a Color[][] array with height rows and width

columns
 Write the code to lighten the image by 25% (by multiplying by 1.25)
 Don't forget to round the results before storing them back into each color

component

Assume the following:

public class List {
private static class Node {
public int data;
public Node next;

}

private Node head = null;
…

}

Write a method in List that reverses the linked list.

public void reverse() {
if (head != null) {

Node reversed = head;
Node temp = head;
Node rest = head.next;
temp.next = null;
while(rest != null) {

temp = rest;
rest = rest.next;
temp.next = reversed;
reversed = temp;

}
head = reversed;

}
}

 Write a method that takes a CharBuffer object
 The CharBuffer object has two methods:
 nextChar() which extracts a char from the input stream
 hasNextChar() which returns true as long as there is another char to

extract
 The method should return true if the input stream is a

palindrome (the same backwards as forwards) and false
otherwise

 Use no String objects or arrays (other than the ones embedded
in the stack)

 Hint: Use at least 3 JCF Deque (stack) objects

 Exam 1 on Monday!

 Office hours from 1:45-4 p.m. canceled today
 Review for Exam 1
 Keep working on Project 2

	COMP 2100
	Last time
	Questions?
	Project 2
	Assignment 3
	Issues of Efficiency
	Fibonacci
	Fibonacci problem
	Recursion for Fibonacci
	Code for Fibonacci
	What’s the running time for fib()?
	Exponential time for fib
	Can we do better?
	Code for better Fibonacci
	Exponentiation
	Recursion for exponentiation
	Code for exponentiation
	Running time for power
	Review
	Week 1
	Week 2
	Week 3
	Week 4
	Sample Problems
	Running time
	What's the running time in Θ?
	What's the running time in Θ?
	What's the running time in Θ?
	Lighten
	Reverse a linked list
	Code to reverse a linked list
	Palindrome
	Ticket out the Door
	Upcoming
	Next time…
	Reminders

